作者:CSDN博客
安装
- pip install langgraph-checkpoint-sqlite
复制代码 异步checkpiont初始化:- from langgraph.checkpoint.sqlite.aio import AsyncSqliteSaver
- conn = aiosqlite.connect(":memory:", check_same_thread=False)
- memory = AsyncSqliteSaver(conn)
复制代码 如果使用异步流式应对,需要确保llm节点或者相关节点也转成异步化操作- asyncdefllm(self, state: AgentState):
- llm_msgs = state['messages']if self.systemMessage:
- llm_msgs = self.systemMessage + state['messages']print(f'ask llm to handle request msg, msg: {llm_msgs}')try:# 关键修复:await 异步调用并直接获取结果
- msg =await self.model.ainvoke(llm_msgs)print(f'msg={msg}')return{'messages':[msg]}# 确保返回的是消息对象而非协程except Exception as e:print(f"Model invocation error: {e}")# 返回错误提示消息(需符合Message类型)from langchain_core.messages import AIMessage
- return{'messages':[AIMessage(content=f"Error: {str(e)}")]}asyncdeftake_action_tool(self, state: AgentState):
- current_tools: List[ToolCall]= state['messages'][-1].tool_calls
- results =[]for t in current_tools:
- tool_result =await self.tools[t['name']].ainvoke(t['args'])
- results.append(ToolMessage(
- tool_call_id=t['id'],
- content=str(tool_result),
- name=t['name'],))print(f'Back to model')return{'messages': results}
复制代码 最后的完整代码如下:- import asyncio
- from typing import Annotated, List, TypedDict
- import os
- import aiosqlite
- from langchain_community.chat_models import ChatTongyi
- from langchain_core.language_models import BaseChatModel
- from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage, ToolMessage, ToolCall
- from dotenv import load_dotenv
- from langchain_community.tools.tavily_search import TavilySearchResults
- from langchain_core.tools import BaseTool
- from langgraph.checkpoint.sqlite.aio import AsyncSqliteSaver
- from langgraph.constants import END, START
- from langgraph.graph import add_messages, StateGraph
- conn = aiosqlite.connect(":memory:", check_same_thread=False)
- load_dotenv(dotenv_path='../keys.env')
- ts_tool = TavilySearchResults(max_results=2)classAgentState(TypedDict):
- messages: Annotated[List[AnyMessage], add_messages]classAgent:def__init__(
- self,
- model: BaseChatModel,
- systemMessage: List[SystemMessage],
- tools: List[BaseTool],
- memory,):assertall(isinstance(t, BaseTool)for t in tools),'tools must implement BASEcALL'
- graph = StateGraph(AgentState)
- graph.add_node('llm', self.llm)
- graph.add_node('take_action_tool', self.take_action_tool)
- graph.add_conditional_edges('llm',
- self.exist_action,{True:'take_action_tool',False: END
- })
- graph.set_entry_point('llm')
- graph.add_edge('take_action_tool','llm')
- self.app = graph.compile(checkpointer=memory)
- self.tools ={t.name: t for t in tools}
- self.model = model.bind_tools(tools)
- self.systemMessage = systemMessage
- defexist_action(self, state: AgentState):
- tool_calls = state['messages'][-1].tool_calls
- print(f'tool_calls size {len(tool_calls)}')returnlen(tool_calls)>0asyncdefllm(self, state: AgentState):
- llm_msgs = state['messages']if self.systemMessage:
- llm_msgs = self.systemMessage + state['messages']print(f'ask llm to handle request msg, msg: {llm_msgs}')try:# 关键修复:await 异步调用并直接获取结果
- msg =await self.model.ainvoke(llm_msgs)print(f'msg={msg}')return{'messages':[msg]}# 确保返回的是消息对象而非协程except Exception as e:print(f"Model invocation error: {e}")# 返回错误提示消息(需符合Message类型)from langchain_core.messages import AIMessage
- return{'messages':[AIMessage(content=f"Error: {str(e)}")]}asyncdeftake_action_tool(self, state: AgentState):
- current_tools: List[ToolCall]= state['messages'][-1].tool_calls
- results =[]for t in current_tools:
- tool_result =await self.tools[t['name']].ainvoke(t['args'])
- results.append(ToolMessage(
- tool_call_id=t['id'],
- content=str(tool_result),
- name=t['name'],))print(f'Back to model')return{'messages': results}asyncdefwork():
- prompt ="""You are a smart research assistant. Use the search engine to look up information. \
- You are allowed to make multiple calls (either together or in sequence). \
- Only look up information when you are sure of what you want. \
- If you need to look up some information before asking a follow up question, you are allowed to do that!
- """
- qwen_model = ChatTongyi(
- model=os.getenv('model'),
- api_key=os.getenv('api_key'),
- base_url=os.getenv('base_url'),)# reduce inference cost
- memory = AsyncSqliteSaver(conn)
- agent = Agent(model=qwen_model, tools=[ts_tool], systemMessage=[SystemMessage(content=prompt)], memory=memory)
- messages =[HumanMessage("who is the popular football star in the world?")]
- configurable ={"configurable":{"thread_id":"1"}}asyncfor event in agent.app.astream_events({"messages": messages}, configurable, version="v1"):
- kind = event["event"]# print(f"kind = {kind}")if kind =="on_chat_model_stream":
- content = event["data"]["chunk"].content
- if content:# Empty content in the context of OpenAI means# that the model is asking for a tool to be invoked.# So we only print non-empty contentprint(content, end="|")if __name__ =='__main__':
- asyncio.run(work())
复制代码 原文地址:https://blog.csdn.net/zhangkai1992/article/details/147075196 |