作者:CSDN博客
在学习智能体,然后又接触到LangGraph,参照文档尝试了一个简单的LangGraph demo。
一、环境准备:
pip install langchainpip install langchain_openaipip install langgraph二、代码:- from typing import TypedDict, Annotated, Sequence
- import operator
- from langchain_core.messages import BaseMessage
- from langchain.tools.render import format_tool_to_openai_function
- from langchain_openai import ChatOpenAI
- from langgraph.prebuilt import ToolExecutor
- from langchain_community.tools.tavily_search import TavilySearchResults
- from langgraph.prebuilt import ToolInvocation
- import json
- from langchain_core.messages import FunctionMessage
- from langgraph.graph import StateGraph, END
- from langchain_core.messages import HumanMessage
- # Import things that are needed generically
- from langchain.pydantic_v1 import BaseModel, Field
- from langchain.tools import BaseTool, StructuredTool, tool
- # 加载 .env 到环境变量,这样就能读取到 .env文件中的 OPENAI_API_KEY和OPENAI_BASE_URL这个设置
- from dotenv import load_dotenv, find_dotenv
- _ = load_dotenv(find_dotenv())
- # 自定义工具
- @tool
- def search(query: str) -> str:
- """Look up things online."""
- print(f"search: {query}")
- return "sunny"
-
-
- @tool
- def multiply(a: int, b: int) -> int:
- """Multiply two numbers."""
- return a * b
- tools = [search,multiply]
- tool_executor = ToolExecutor(tools)
- # We will set streaming=True so that we can stream tokens
- # See the streaming section for more information on this.
- model = ChatOpenAI(temperature=0, streaming=True)
- functions = [format_tool_to_openai_function(t) for t in tools]
- model = model.bind_functions(functions)
- class AgentState(TypedDict):
- messages: Annotated[Sequence[BaseMessage], operator.add]
-
- # Define the function that determines whether to continue or not
- def should_continue(state):
- messages = state['messages']
- last_message = messages[-1]
- # If there is no function call, then we finish
- if "function_call" not in last_message.additional_kwargs:
- return "end"
- # Otherwise if there is, we continue
- else:
- return "continue"
- # Define the function that calls the model
- def call_model(state):
- messages = state['messages']
- response = model.invoke(messages)
- # We return a list, because this will get added to the existing list
- return {"messages": [response]}
- # Define the function to execute tools
- def call_tool(state):
- messages = state['messages']
- # Based on the continue condition
- # we know the last message involves a function call
- last_message = messages[-1]
- # We construct an ToolInvocation from the function_call
- action = ToolInvocation(
- tool=last_message.additional_kwargs["function_call"]["name"],
- tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]),
- )
- # We call the tool_executor and get back a response
- response = tool_executor.invoke(action)
- print(f"response:{response}")
- # We use the response to create a FunctionMessage
- function_message = FunctionMessage(content=str(response), name=action.tool)
- print(f"function_message:{function_message}")
- # We return a list, because this will get added to the existing list
- return {"messages": [function_message]}
-
-
- # Define a new graph
- workflow = StateGraph(AgentState)
- # Define the two nodes we will cycle between
- workflow.add_node("agent", call_model)
- workflow.add_node("action", call_tool)
- # Set the entrypoint as `agent`
- # This means that this node is the first one called
- workflow.set_entry_point("agent")
- # We now add a conditional edge
- workflow.add_conditional_edges(
- # First, we define the start node. We use `agent`.
- # This means these are the edges taken after the `agent` node is called.
- "agent",
- # Next, we pass in the function that will determine which node is called next.
- should_continue,
- # Finally we pass in a mapping.
- # The keys are strings, and the values are other nodes.
- # END is a special node marking that the graph should finish.
- # What will happen is we will call `should_continue`, and then the output of that
- # will be matched against the keys in this mapping.
- # Based on which one it matches, that node will then be called.
- {
- # If `tools`, then we call the tool node.
- "continue": "action",
- # Otherwise we finish.
- "end": END
- }
- )
- # We now add a normal edge from `tools` to `agent`.
- # This means that after `tools` is called, `agent` node is called next.
- workflow.add_edge('action', 'agent')
- # Finally, we compile it!
- # This compiles it into a LangChain Runnable,
- # meaning you can use it as you would any other runnable
- app = workflow.compile()
- #inputs = {"messages": [HumanMessage(content="what is the weather in Beijing?")]}
- inputs = {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]}
- response = app.invoke(inputs)
- print(type(response))
- print(f"last result:{response}")
- # 输出如下信息:
- # {'messages': [HumanMessage(content='3乘以5等于多少'), AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\n "a": 3,\n "b": 5\n}', 'name': 'multiply'}}, response_metadata={'finish_reason': 'function_call'}, id='run-bbf18160-747f-48ac-9a81-6c1ee3b70b07-0'), FunctionMessage(content='15', name='multiply'), AIMessage(content='3乘以5等于15。', response_metadata={'finish_reason': 'stop'}, id='run-0d1403cf-4ddb-4db2-8cfa-d0965666e62d-0')]}
复制代码 关于状态机、节点、边、有向无环图等概念可以去参照相关文档,在这里就不赘述了。
上面代码添加了2个节点,其分别为agent和action,还添加了1个条件边。
三、解释一下几个函数:
3.1. add_node(key,action):
添加节点。节点是要做处理的。
key 是节点的名字,后面会根据这个名字去确定这个节点的。
action是一个函数或者一个LCEL runnable,这个函数或者 LCEL runnable 应该接收一个和状态对象一样的字典作为输入,
其输出也是以状态对象中的属性为key的一个字典,从而更新状态对象中对应的值。
3.2. add_edge(start_key, end_key)
在两个节点之间添加边(连线),从前往后
start_key 开始节点的名字
end_key 结束节点的名字
3.3. add_conditional_edges(source, path, path_map=None, then=None)
添加条件边
source (str) – 开始节点名
path (Union[Callable, Runnable]) – 决定下一个节点的回调函数
path_map (Optional[dict[str, str]], default: None ) – 映射下一个节点的字典.
then (Optional[str], default: None ) – 执行完选择的节点后的下一个节点名
3.4. set_entry_point(key)
设置开始节点,图将从这个节点开始运行
3.5. compile(checkpointer=None, interrupt_before=None, interrupt_after=None, debug=False)
编译state graph为CompiledGraph对象
原文地址:https://blog.csdn.net/happyweb/article/details/138366645 |